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Abstract

When an inventory of multiple items is used to support the completion of an

overall job or mission, commonly used inventory service level measures

which are defined in terms of item availability are not appropriate. This

paper develops a general model for problems of this type in which item
demands are also interdependent. A heuristic is derived for determining le

stock levels that are guaranteed to satisfy the given inventory system

performance objective, but at a slightly higher cost than would be achieved

by the true optimum. F; __

N or
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1. Introduction

Service levels of multi-item inventory systems are often defined in terms
of general performance measures, such as the number of "Jobs completed" or
the number of "end products" produced, where each job or end product
requires a combination of the basic inventory items for completion. For
example, repairing a machine in the field may require several parts and
tools, any one of which is sufficient to cause an incomplete job if it is
not carried in the repair service kit. In this context, the performance of
the repair kit is defined as the fraction of jobs for which it allows
completion, rather than the fraction of part demands that it is able to
satisfy. In the context of field repair systems, several stocking analysis
methodologies have been developed for this problem. [Smith, Chambers and
Shlifer(1980), Mamer and Smith(1982),(1985), Graves(1982), Hausman(1982),
Schaefer(1983), March and Scudder(1984) ]. These approaches recognize the

interdependencies between the item demands in multi-item systems, but

generally restrict item stock levels to be 0 or 1. This restriction,

which is imposed to obtain computationally feasible solution methods,

limits the models' application to items which are restocked after each job
or to items such as tools, whose inventories are not depleted after use.

In recent articles, Baker, Magazine and Nuttle(1986) and Baker(1985)
analyze a structurally similar problem in the manufacturing context. Their
papers consider a production system in which components are obtained in

advance for uncertain demand. Later these components are assembled on
order into final products. The service level of the system is deftibd as

the probability of meeting all final product orders, while inventory
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Investment is determined by the stock levels of the component items. These
authors analyze examples to illustrate the effect of component commonality

on the cost of meeting specified final product service level targets.
Despite the structural similarity between the manufacturing and field

service problems, the previously discussed repair kit optimization
techniques do not apply to the manufacturing problem as stated, because the

item stock levels are greater than one and the component inventories are
gradually depleted as end product orders are filled. Baker, Magazine and
Nuttle note the complexity of solving general problems of this type and the
need for more research in multi-item, multi-level inventory systems.

In this paper, we propose a heuristic for extending the previously
developed job completion inventory models to the case of general stock
levels with inventory depletion. Because of the complexity of the problem,
we believe that a direct solution even for moderately large numbers of

items and jobs (or final products in the case of manufacturing) is not
computationally feasible. Instead we develop an objective function that
serves as a lower bound function for the service level that is achieved for
a given stock level. The minimum cost stock levels can then be found that
will bring the lower bound up to a specified service level target. This

approach guarantees that the service level objective will be met but,
because of the use of the lower bound will tend to result in additional

inventory cost. Alternatively, for a fixed budget constraint, we can
maximize the service level bound. This second case is somewhat more

powerful, because the resulting stock level choice can then be plugged into
the actual objective function, which could be evaluated by Monte Carlo.
This second case is illustrated by an example, and other intermediate

results are illustrated as well.

2. Model Specifications

Key data for the problem we consider is contained in the "Job matrix" J,

which is defined as follows:

JiJ - the number of items of type i required to complete a job
(or satisfy an order) of type J.

The structure of a job matrix is illustrated in Figure 2.1 on the next
page, which will serve an example for subsequent illustrative

calculations. In general, we will assume there are n item types ( i
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1,..., n) and a job types (j - 1.... m).

Jobs or end product orders are assumed to form a sequence of independent

events, whose interarrival times have mean I/A. That is,

A- rate per unit time at which requests or jobs arrive.

0 1 2 0 4 1
1 0 1 0 0 1

1 1 1 0 0 0 JJ "#items of type I

2 0 2 1 0 0 required for job j

1 1 0 0 1 1
Item 4 0 4 2 0 0

type t 0 1 0 2 0 1
4 0 0 0 0 0
0 2 0 1 2 0
0 0 0 0 4 0

job type J

Figure 2.1. A Job Matrix J

Job tyes on successive arrivals are assumed to be independent. The

marginal probabilities for job types are defined as follows:

pj - Plan arriving job or request is of type ,J}.

In some cases, we will assume that the job arrivals are also Poisson

processes.

The expected demand rates for individual items are determined by:

Ai .- Jijpj, (2.1)

where

Ai - average demand rate per unit time for Item I, -....
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For any fixed time t, let us define the random variables:

Nj(t) - number of requests (Jobs) of type j arriving by time t,

j -l...,m.
Xi(t) - number of items of type i requested by time t, I - 1,... n.

Letting

X(t) - Xl(t), ... n(t)

N(t) - Nl(t) ... Nm(t),

we clearly have the matrix relationship

X(t) - JN(t). (2.2)

For a given vector s - 5
1 ..... sn of stock levels,

si - initial stock level for item type i,

we also have

flall Jobs completed up to time t) - PIX(t) S s). (2.3)

Equation (2.3) thus defines one performance measure for the multi-item

system with stock level s; namely the probability that a time t will

elapse with no unsatisfied requests.

Another performance criterion of interest is:

E[tiue before a stockout occurs] - r

[1 - P(X(t) s s)]dt. (2.4)

The evaluation of the inventory system's performance can be done exactly if

the probability P(X(t) s s) in Equation (2.3) can be calculated.

This calculation is more difficult than it may first appear, however. For

example, suppose that the job arrivals are independent Poisson processes.
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Then N(t) and X(t) are clearly vector valued Markov processes. which
have renewal points whenever complete restocking occurs. We are concerned

with the probability distribution of the time to absorption, which occurs

whenever Xi(t) > s for some i. In principle, the steady state

probabilities and the expected time to absorption can be determined

analytically for these Markov processes. However, in many practical

problems, the number of possible states makes the transition matrix for

this problem prohibitively large. For example, if there are twenty
different Jobs that may be encountered and there is enough inventory so

that each job may be served up to four times, the total number of different

states for the vector N(t) is 205 - 3.2 Million. Thus only in very

small problems will the exact solution of the Markov process be practical.

Monte Carlo Approximation

An alternative approach for calculating the probability P(X(t) S s) is
Monte Carlo. This is considerably more effective from a computational

standpoint than exact calculation and the number of samples to obtain any
desired level of accuracy can be determined. For a given job matrix J

and stock level s, let us define the indicator random variable

1 if X(t) : s

Zk -

0 otherwise,

corresponding to the kth Monte Carlo sample. Then clearly

n
P{X(t) S s- lim Sn - (l/n)l Zk. (2.5)

n-t k-l

Also, since the variance of the probability estimate Sn is maximized when

the probability is 1/2, we see that

Var(Sn ) - (l/n)P(X(t):Ss)l - P(X(t)Ss)] S 1/4n.

Thus to obtain an accuracy of roughly two standard deviations (950) on the

second decimal place of P(X(t) S s). one would need to take n such that

2/(AX') S 0.01 or n k 10,000.
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This number of simulation samples is feasible for fairly large problems.
and often less accuracy is acceptable.

The main difficulty with Monte Carlo is that it provides only a point
estimate and gives no indication of how the performance varies as a
function of changes in stock level. This sensitivity estimation Is crucial
for inventory policy selection and optimization. In Section 3, we will
derive a lower bound objective function that is simpler to calculate. It
also provides the derivative information necessary for optimization.

The Effects of Item Demand Dependencies

In multi-item inventory control systems, a comon assumption is that part
demands are independent Poisson arrivals, with their arrival rates
determined by the total item demandsof each type observed over a period of
time. It is interesting to consider the effects of simply ignoring the
interdependencies between the demands for items and analyzing the inventory
system as though it had independent item demands. To illustrate this, let
us consider the example in Figure 2.1. Let us assume that jobs are Poisson
arrivals with rate A - 1, and all Jobs are equally likely. In this case,
the demand rates Ai below would be observed for each of the items i,
based on (2.1).

pj- 1/6, j -1, 2, 3, 4, 5, 6

Item i 1 2 3 4 5 6 7 8 9 10
Ai 1.17 0.5 0.5 0.83 0.67 1.67 0.67 0.67 0.83 0.67

We will determine the probability of no stockout up to time t using the
independent item demand approach and the true demand process and compare
the results. In this case, the problem is small enough that an accurate
estimate of P(X(t) s a) can easily be determined by Monte Carlo.

The results for the stock levels

s - 8 3 3 5 4 10 4 4 5 4

are shown graphically in Figure 2.2. [This stock level was chosen to be
twice the expected demand rate per unit jtLm& for each item type. ) The
"Exact* probability is PIX(t) s a) evaluated by Monte Carlo. 'Id Parts"
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in the probability determined by the product of simple Poisson

probabilities that the demand for part I is less than or equal to s i ,

with demand rates Ai determined from (2.1). The third line in Figure

2.2, labeled 'Parts/Job' is based on a bound, which we describe in the next
section.

It is interesting to note in Figure 2.2 that the probability of no

stockout calculated by the simple Poisson assumption is higher than the

Exact probability of no stockout for the smaller values of t. while for

larger t values it becomes less than the Exact value. The errors in both

these regions are clearly significant. Thus the interdependencies in the

part demands clearly cannot be ignored in many problems.

The 'Parts/Job" bound has two advantages over the "Ind Parts"

approximation. First, in the critical region above 90t, it is much more

accurate. Second, it always lies below the true probability. Thus, if

sufficient inventory is provided to meet the service level constraint

calculated form the lower bound, we can be certain that the true service

level has been met as well.

3. Obtaining Bounds

In this section we derive the "Parts/Job" bound in Figure 2.2. Since the

exact calculations of the probability distribution of the time to stockout

are complex and the sensitivity to stock level changes is even sore

difficult to obtain, we seek an approximation for the objective function

that makes it easy to evaluate and also provides derivative information.

Let us consider the arrival process of repair jobs or demands for service,
which is defined by the a independent Harkov processes Nj (t). We

use the theory of associated random variables to obtain a lower bound for

the probability of completing all jobs up to time t.

Thaora .I- If the Nj(t) are independent Narkov processes, then we have

the inequalities

11 -PI1(t) X s13 P41(t) S s) k I P111(t) X 80) (3.1)

i-l
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Proof: We show that if the (Nj(t)) are independent processes, then for
each t, the random variables (Xi(t)) are associated. Since the N (t)
are independent, they are associated random variables. Since JLJ a 0 for
all ij it follows that the 1Xi(t)) are nondacreasing functions of the
variables (Nj(t)). Therefore, the fXi(t)) are associated random

variables themselves. For associated random variables, the inequalities in

(3.1) are known to hold. QED.

[See Barlov and Proschan (1975). pp. 29-34 for the development of the
results used above.)

We can now focus our attention on the calculation of the probability

distributions of the separate processes (Xi(t)). This in effect
substitutes the calculation of m one dimensional probability evaluations
for one a dimensional probability evaluation, which is in general a great

simplification.

For one particular case of interest, the evaluation of the individual
(Xi(t)) results in a simple closed form solution. If the job matrix J
contains only O's and l's , that is, no more than one of each part type
is required per job and the job arrivals are independent Poisson events, we
can express P(X1 (t) s sl } in closed form. This is based on the
observation that the part demands themselves ara Poisson arrivals in this
case. That is, part I is demanded at time t if and only if a job

arrives at time t, (a Poisson arrival) and the job is one for which Jij "
1. This creates a Poisson process with rate

I- ifj3 pj

Thus we have proved the folloving result.

Coaollaz Z L-If the Nj(t) are independent Polsson processes and the
maximum entry In J is 1, then we have

Pill(t) z sll I * 'l t (Ait~k/ki. (3.2)]

k-O

Furthermore, by taking the product of the P(XL(t) S O and integrating
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over t, we obtain a lover bound for the expected time to first stockout.

61 an/ k n
1 - 0 " 1(k .. kl''"l/A)I1 (ql)ki (3.3)

ki-O kn-O i-1

where qi - .i/A and k - Xiki.

Under the assumptions of Corollary 1, the calculation of P(Xi(t) S Si

reduces to the simple "Parts/Job" method discussed previously. Thus, in

this case, the simple part fill approach provides a lover bound on the

system perfovance.

Calculating the Distribution of Xi(t)

In the general case, each row in the job matrix would determine the
distribution of the number of parts of type i required when a demand

arrives. That is, we define the random variable

Di(k) - the number of items of type i required on the kth demand.

Its probability distribution is clearly given by

P(Di(k) -Jiji - pi, J - 1.... ,m and all k. (3.4)

In the Poisson arrival case, this would mean that the part demands are

independent arrivals with a compound Poisson distribution. The random

variable Xi(t) can be expressed as

M(t)

Xi(t) - I Di(k), (3.5)

k-1

where 1(t) - I Nj(t).

In the general case, we can calculate P(Xi(t) : si) as follows. First

define
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K
di(K) - I Di(k). (3.6)

k-O

Then we use the expansion formula

PIXi(t) S st) - i P(di(K) s si)P(M(t) - K). (3.7)

K-0

Then define

Fi(KIsi) - P~di(K) : si), (3.8)

that is, the probability that part i does not stock out after K jobs.
In the general case Fi(Kjsi) is a multinomial probability, which must be
summed over a particular set of vectors of arriving jobs. That is, we
define the set of vectors

Si(Kjsi) - ((nl,...,nm) I nj - K and njJij : si}. (3.9)

Then we have

Fi(Klsi) - (nl . . . Qi n (pj)nj (3.10)

neSi(Kisi)

Once the Fi(Klsi) are obtained, P(Xi(t) S si) is calculated from the
expansion formula. It should be noted that although the sum is infinite,
the terms generally become small quite quickly. For example, if the jobs
are Poisson arrivals, the size of the error from dropping the remaining terms

can be bounded by the tail area of the remaining Poisson terms times the
last Fi(Klsi), because FI(Kisi) is clearly decreasing in K. It is
also interesting to note that truncating the expansion formula results in
obtaining a job completion probability that is too small, so that the error

from the approximation always results in a conservative buund.

In the case for which JJ consists of only O's and 1's, Fi(Klsi) can
be express6d mnore simply. As before, we lot qi equal the probability
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that part i is demanded on a given job,

qi Jij Pj A i/A.

Then
si /K

Fi(Klsi) - 0| q? (1 q)K 3. (3.11)
m-0

and P(Xi(t) : s ) is given by (3.2).

In the general case, Fi(Klsi) can be calculated in principle, but it is a
difficult calculation for large numbers of jobs and parts. [It should be
noted, however, that it is still much simpler than calculating the joint

probability PIX(t) s s).]

For the more difficult cases Monte Carlo provides a practical method for
determining Fi(Klsi). In particular, one can generate random sequences of
K jobs and simply observe the relative fraction of the sequences that do
not produce stockout. Since, this is an estimate of a probability, the
variance of the estimate is less than or equal to 1/4n, where n is the
number of sequences tested as noted in (2.5). This allows n to be
selected to achieve the desired degree of accuracy. [Note: In Section 2,
Monte Carlo was used to obtain P(X(t) s s) directly, which would be
quicker than evaluating all the Fi(Kls i . However, using Monte Carlo to
evaluate Fi(Kisi) as discussed above provides derivative information
regarding the effects of changing the stock level s i .]

In Figure 2.2, the probability of no stockout has been plotted as a
function of elapsed time for the example job matrix shown in Figure 2.1.
The 'Exact" and "Ind Parts" lines were discussed at the end of Section 2.

The "Parts/Job" line was obtained by evaluating Fi(Klsi) for the given
job matrix and then combining it with Poisson probabilities P{1(t)-K)

using the expansion formula. For the time interval shown here K-6 was
sufficient to obtain three decimal place accuracy. Note that the
"Parts/Job" line provides a pessimistic (lover) bound for the exact
probability of no stockout, as implied by Theorem 1. In this case the
bound is fairly accurate. In addition since its slope appears to
approximate the exact objective function fairly veil, it should serve veil
as a surrogate objective function. The "Parts/Job" line in Figure 2.2 is
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also clearly a major improvement over the "Ind Parts" line in certain
regions. For example, when the "Ind Parts" line predicts a stockout
probability of 1t, the true probability is roughly 5%, while the
OParts/Job' line predicts roughly 6.5%.

4. Optimizing s

It is important to consider how Fi(Ktsi) varies with si in order to
solve optimization problems. In the case for which Jij contains only
O's and I's, it is clear, when si > Kqi, that further increases in si
provide decreasing marginal increases in Fi(Kisi). This is because the
binomial distribution is unimodal with its maximm near iqi. However, in
the general case, this monotonicity does not hold. This can be illustrated
intuitively by considering the row J~l, ..., Jim and associated

probabilities shown below.

# part i required 1 2 3 4

Pj 0.01 0.01 0.01 0.97

Clearly as si passes through each multiple of four, there will be a
substantial jump in the probability of no stockout. Thus the property of
decreasing marginal improvements holds only in the simpler case.
Furthermore, this same type of argument can be used to show that the
original objective function P(X(t) : a) is not concave in s either.

In choosing the stock level a, one would typically consider an
optimization problem of the following form

sin f hisi, subject to P(X(t) S a) k a. (4.1)
Isi } J

This problem has Lagrangian

#(s) - hisi - pP(X(t) : ). (4.2)

This Lagrangian is clearly analogous to the one that results from the
problem

-13-



max P{X(t) 5 s) subject to his, s b. (4.3)

(si)

These problems are typically not computationally feasible, because

of the difficulty in evaluating the objective function. Furthermore, as

noted previously, the objective functions may not be concave in a.

An alternative optimization approach for (4.3), or with the appropriate

modification (4.1), is to consider meeting the lower bound on service level

from Theorem 1 at minimum total inventory cost. That is, we consider the

problem

max log P(Xi(t) S s1) subject to hisi s b, (4.4)

which has Lagrangian

V(s) - . log P(X1 (t) S SO - pg hisi (4.5)
Sii

Problem (4.5) has the major advantage of being additively separable. In

the simpler case, for which Jtj -0,1, the individual functions

log(P(Xi(t) s sj)) - phisi are concave in si . Let us see why this is

true. First, as noted above, all the functions Fi(Klsi) experience

decreasing marginal improvements as si is increased beyond si > K~i/A.

Since P(Xi(t) :S si) is a weighted sum over K of the Fi(Ktsi), where

the weights are invariant with si, P{Xi(t) s si) will experience

decreasing marginal improvements as well. Thus a marginal analysis

approach of allocating additional stock si to the part that has the best

improvement per unit cost will lead to a unique optimum when Jlj 5 1 for

all ij.

Example Optimization

Let consider the solution of a problem of the form (4.5) to illustrate the

solution technique and the accuracy of the approximation. For this

example, we will not use the job matrix in Figure 2.1, because it has

entries greater than one, which would cause the individual objective

functions in (4.5) to have multiple local optima. Instead, we will

considex the job matrix shown below with all JiJ S 1.

.14-



jobs

1 1 1 1 1 0

1 1 1 1 0 0

parts 1 1 1 0 0 0
1 1 0 0 0 0

1 0 0 0 0 0

The holding costs (hi) per unit will be 1,1,2,2,3,3, respectively. Jobs

are assumed to be Poisson arrivals with rate A - 1 and each job type is

equally likely to occur. Thus the individual part demand rates Ai per

unit time are, respectively

1, 5/6, 2/3, 1/2, 1/3, 1/6.

We will take t - 6 and solve problem (4.5), with P(Xi(6) :s si  given by

(3.2). Instead of choosing a particular budget constraint, we will develop

the exchange curve for probability of no stockout before t - 6 for all

inventory budgets greater than 50.

First we need to determine the form of the optimal stocking policy for

(4.5) for this problem. Since we are developing an exchange curve, what we

really need is the optimal order in which to stock the parts as the budget

is increased. This can be determined as follows. Consider the value of

p, call it p(si), such that we become indifferent between the stock

level si and the stock level si+l for part I. If we consider AO(si )

- 0 for the Lagranglan In (4.5), we obtain

&(a,) - [log P(Xi(6) : si+l} - log P(Xi(6) s si)]/hi (4.6)

for each part I and stock level si . Because of the nature of the Poisson

probability in (3.2), each p(si) is strictly decreasing in &I . We can

use the right hand side of (4.6) to rank the stock levels in terms of the

value of p that will cause them to first be activated. Clearly as pa

decreases we pass through the various stock levels of all parts in the

optimal order, since the same pa serves for all parts simultaneously.
This ordering of right-hand sides of (4.6) across all part types and stock

levels then gives the optimal order for successively increasing the stock

levels in solving (4.5).

-15-
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The resulting exchange curve for this problem is sl-- in Figure 4.1. This
graph was constructed from a few sample stock levels, as shown below,
although all stock levels were determined in sequence for the problem.

Inventory Stock
Cost Levels
hisi 61s 2 83 s 4 s 5 s 6

50 9 8 5 4 3 2
56 10 9 6 5 3 2
63 10 9 7 6 4 2
68 11 10 7 6 4 3
79 12 11 9 7 5 3

88 13 11 9 8 5 4
98 14 13 10 9 7 4

105 15 14 11 9 7 5

The exchange curve in Figure 4.1 shows the probability of no stockout that
was achieved by each of these stock levels for the objective function in

(4.3).

To test the accuracy of the bound in Theorem 1, the actual job completion
probability P(X(6) < s) was also determined for each of the stock levels
a shown above by Monte Carlo. This is also plotted on Figure 4.1. [N.B.
This actual probability calculation used the stock levels s shown above,
which are not the optima for the actual objective function!] In this
example the difference between the bound and the actual objective function
is considerably larger than it was for the job matrix in Figure 2.1. This
Is probably because the job matrix in this section has much more
comonality or linking of parts across jobs, making the independent
treatment of parts a poorer assumption.

However, from an optimization standpoint. we may road the probability of
no stockout from the actual curve to determine the performance that is
achieved for any given inventory investment. The error introduced by our
approximation of using the bound instead of the true objective function is
really the difference between the performance that the Inventory Investment
in Figure 4.1 achieves and the performance that could have been achieved by
optimizing the stock level for the actual objective function subject to the

-16-
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same budget. because of the difficulties in optimizing the actual
objective function, there is no way to determine precisely how large this
error is. However, for any budget level, a corresponding stock level and
probability of no stockout obtained from Figure 4.1, we can be certain of
achieving the performance level shown with that inventory investment.

5. Conclusion

This paper considers the problem of selecting stock levels for multi-items
to meet a combined objective of job completion rate or probability of
filling all orders when demands for parts are interrelated. As noted by
previous authors, this is both a difficult and important problem in many
inventory systems. We believe that exact solutions will be computationally
unfeasible for the optimization problems resulting from many applications.
We have developed a lower bound function for the. service level objective
which is simpler to calculate. In the case of job matrices with all O's
and l's this lower bound objective function is also relatively easy to
optimize. The stock levels resulting from optimization of the lower bound
can then be evaluated for the true objective function using Monte Carlo.
This allows an exchange curve to be derived for the true objective
function, using reasonable (although generally not optimal) stock levels.
This combination of optimizing a surrogate objective function and
evaluating the true objective function by Monte Carlo appears to be an
attractive approach for a class of problems which would not be solvable
otherwise.

Clearly there are important classes of problems that are beyond the scope
of the solution methods described in this paper. Therefore, we believe
that this is fruitful area for further research, both in the context of job
completion rates for repair service systems and for order fill rates in
manufacturing systems with parts commonality.

-17-
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